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We experimentally observed synchronized calling behavior of male Japanese tree frogs Hyla japonica;
namely, while isolated single frogs called nearly periodically, a pair of interacting frogs called synchronously
almost in antiphase or inphase. In this study, we propose two types of phase-oscillator models on different
degrees of approximations, which can quantitatively explain the phase and frequency properties in the experi-
ment. Moreover, it should be noted that, although the second model is obtained by fitting to the experimental
data of the two synchronized states, the model can also explain the transitory dynamics in the interactive
calling behavior, namely, the shift from a transient inphase state to a stable antiphase state. We also discuss the
biological relevance of the estimated parameter values to calling behavior of Japanese tree frogs and the
possible biological meanings of the synchronized calling behavior.
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I. INTRODUCTION

Synchronization has been observed in many physical os-
cillators such as Huygens’ clocks and superconductive Jo-
sephson junctions [1-4]. The possible mechanisms have
been studied both mathematically and numerically: Winfree
[1] performed the phase description on the oscillatory sys-
tem; Kuramoto [2] established the general framework for the
description on a system of coupled oscillators; and the recent
studies include noise-induced synchronization [5], feedback
control of coupled oscillator systems [6], and spatiotemporal
dynamics of “swarm oscillators” [7].

Moreover, synchronization of biological oscillators, in-
cluding synchronized behavior of living beings, has been
analyzed in various systems [1-4]. In this paper, we study
spontaneous calling behavior of male Japanese tree frogs
Hyla japonica shown in Fig. 1. There have been some ex-
perimental studies on synchronization in calling behavior of
frogs: Loftus-Hills [8] studied the synchronization in calling
behavior of frogs Pseudacris streckeri, where tape-recorded
calls were used to evoke response of frogs; Lemon and
Struger [9] studied acoustic entrainment to randomly gener-
ated calls in frogs Hyla crucifer.

Japanese tree frogs are distributed widely and ubiqui-
tously in Japan. While the single male frogs call nearly pe-
riodically as shown in Fig. 2(a), they can hear sounds
through their eardrum [10]. Therefore, the males can interact
by producing and hearing sounds, and the situation that
many frogs call together is understood as a system of
coupled oscillators. We have studied spontaneous calling be-
havior of male Japanese tree frogs both experimentally and
theoretically [11-14].

Especially in calling behavior of two male Japanese tree
frogs, we experimentally observed coexistence of inphase
synchronization and antiphase synchronization; the time se-
ries analysis clarified that while inphase synchronization is
just transient, antiphase synchronization is stably observed
[see Fig. 2(b)] [14]. In this study, we introduce a general
phase-oscillator model and then propose two concrete mod-
els with the first- and second-order approximations by fitting
the unknown parameters in the models to the average phase
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and frequency properties during the synchronized calling be-
havior [14]. Then, we discuss biological relevance of the
estimated values of parameters to calling behavior of Japa-
nese tree frogs as well as possible biological meanings of the
synchronized calling behavior.

II. MATHEMATICAL MODELING
A. Modeling periodic calling of isolated frogs

First, let us consider the situation that two isolated frogs
call without interaction. The periodic calling behavior of re-
spective frogs is modeled as the following phase oscillators
with the phase variables 6, € S!' and 6, € S' [12,13]:

de

a: , 1
1 =% (1)
dao,
—v_ , 2
di Wy (2

where 6, and 6, represent the phases in the calling of frog A
and that of frog B, respectively, and w, and w, are the in-
trinsic frequencies. If we assume that §,=0 and 6,=0 corre-
spond to the timing in the successive calls of respective

;

FIG. 1. (Color online) Japanese tree frog Hyla japonica.
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FIG. 2. Time series data in calling behavior of Japanese tree
frogs: (a) periodic calling of one frog and (b) alternation calling of
two frogs.

frogs, this model exhibits that the isolated frogs call periodi-
cally with their own intrinsic frequencies. From the experi-
mental data [14], w, and w,, are estimated as follows:

wa
Da _ 387 Hz. 3)
21
2b 433 Hz. )
2

B. Modeling antiphase synchronization in the interactive
calling behavior

Second, we model interactive calling behavior of two
frogs with a system of coupled phase oscillators as follows

[2]:

de,

T=w + 0,—8,, 5
dt W, gab( a b) ( )
do,

d_[b = wb+gba(0b_ 0{1)’ (6)

where g,, and g, are 2m-periodic functions that represent
the mutual interaction of frogs. To examine whether oscilla-
tors a and b synchronize or not, we define the phase differ-
ence ¢=0,—6, €S' and analyze the dynamics. Subtracting
Eq. (6) from Eq. (5) yields

dé

dt = (wa - wb) + gab(¢) - gba(_ ¢) (7)

If w,=w, and g,,(d)=—-g,.(—p)=sin ¢, the stable equilib-
rium point ¢*=1r is obtained and the perfect antiphase syn-
chronization, which is similar to the experimental observa-
tion in Fig. 2(b), can be represented by the model. Then, for
simplicity, we assume that g,, and g,, are given by the first-
order components in Fourier expansions as g,,(¢)=
—-K, sin(—¢+ @) and g,,(— o) =-K, sin(¢p+a), where K, is a
coupling coefficient and « is a phase-shift parameter. There-
fore, Egs. (5)—(7) yield

de,

=w,—- K, sin(6,- 0, + a), 8
dt w, o sin(6, - 6, + @) (8)
dé,
d—tbzwb—Kosin(Ba—Hb+a), (9)
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¢ _

0 (w, — wp) + 2K, cos a sin ¢. (10)
If |w,—w,|=|2K, cos al, the following equilibrium points
¢" exist:
% . Wy — W,
=arcsin| —— |. 11
¢ (2](0 cos a) (1

Substituting ¢* into Eqgs. (8) and (9) gives the synchronized
frequency as follows:

de, . y
= w, — K, sin(— ¢* + a), (12)
dr | 4
de
=1 = w,— K, sin(¢" + @), (13)
dr | 4
de, do,
where |4 =7 |4

On the other hand, the time series analysis clarified the
phase and frequency properties during the call alternation
corresponding to the antiphase synchronization as follows
[14]:

o = 1057, (14)

46,
dt

de
o= —2
& t

anti

27=3.01 Hz, (15)
¢*

anti

where ¢, . is the average phase difference between the call

of frog A and the successive call of frog B, and
Rl 277:% d)*nti/ 27 is the synchronized frequency.
is close to 7 and the

a

dt anti a

Note that the phase difference ¢
synchronized frequency % - (i=a and b) is smaller than
the intrinsic frequencies w, and wy,. Moreover, it should be
noted that the phase-shift parameter, «, is necessary for ex-
plaining the experimentally observed change in the frequen-
cies of Egs. (3), (4), and (15) between calling alone and call
alternation: if a=0, the synchronized frequency is simply
given by the mean of the intrinsic frequencies, (w,+w;)/2,
which contradicts the experimental observation.
Substituting Egs. (3), (4), (14), and (15) into Egs. (12) and
(13) provides the values of unknown parameters as follows

[15]:

*
anti

Ky=-11.551, (16)

a=0.204 967. (17)

The set of the parameter values given by Egs. (3), (4), (16),
and (17) satisfies the condition for existence of equilibrium
points, |w,—w,| =|2K, cos a|. However, the set cannot ex-
plain the experimental result unfortunately because, under
these conditions, the equilibrium point representing the
phase property ¢*=1.057 in the alternation calling is un-
stable as shown in Fig. 3(a); since w,> w,, if ¢ is nearly
equal to 77 with ¢* <7 then it can be stable as understood by
Eq. (10), but ¢*> r in fact.

Then, we extend the model of Egs. (8) and (9) to repro-
duce the stable antiphase synchronization experimentally ob-
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FIG. 3. (Color online) Stability of the phase property in the call alternation, which is estimated from the experimental data [14]. (a) The
curve shows (w,—w,)+2K, cos a sin ¢ under the conditions of Egs. (3), (4), (16), and (17), and it is confirmed that the equilibrium point

of the antiphase synchronization (¢wm, & | #

/277) (1.0577,3.01) is unstable. (b) The curve shows (w,—wp)+2K cos(

)

under the conditions of Egs. (3), (4), and (27) and the equihbrium point of the antiphase synchromzation becomes stable (C)The curve

shows (w,—wp)+2K cos( a";a”)sm( H-=
synchronization is stable.

served as Fig. 2(b) by considering the effect in asymmetry of
the phase-shift parameter a: we assume that g,, and g,, are
given as g, (¢)=-K sin(-¢+a,) and g,,(-¢)=-K sin(¢
+a,), where «a,# a,. Therefore, Egs. (5)—(7) are given as
follows:

de,
“=w,—Ksin(6,- 6,+«a,), (18)
dt
db,
—bzwb—Ksin(Gu—0b+ab), (19)
dt
d 0t a”
d_(f) =(w, — wp) + 2K cos( - 5 ab)SiH(d)— %)-

(20)

If |w,—wp|=
lowing equilibrium points ¢™:

Wy, — Wy
2K cos{(a, + ap)/2}

a,— o
]+ S (21)

Substituting ¢* into Egs. (18) and (19) gives the synchro-
nized frequency as follows:

¢ = arcsin[

de,
—| =w,-Ksin(- ¢" + a,), (22)
dt &
de,
— —Ksin(¢" + ay), (23)
dr | 4
where ddi o= 2% o |-

Then, substitutlng Egs. (3), (4), (14), and (15) into Egs.
(22) and (23) provides the conditions for estimating the un-
known parameters. However, here, we have five parameters,
w,, wy,, K, a,, and a;, and four experimental conditions given
by Egs. (3), (4), (14), and (15). Hence, we cannot determine
the suitable parameter values. To find plausible solutions by
simple modification of the model of Egs. (8) and (9), we

assume that one of the parameters, K, «,, or «;, is given by
corresponding parameter values estimated as Egs. (16) and
(17); namely, there are three possible choices of K=K, «,
=a, or a,=c. First, we assume that K is given by K, of Eq.
(16) as follows:

K=-11.551, (24)

and estimate the other parameters, «, and «,,. We have sub-
stituted K=K, and Egs. (3), (4), (14), and (15) into Egs. (22)
and (23) and found the possible parameter values by using
the Newton method as follows:

a,=0.204 96 or 0.895 04, (25)

a,=0.204 967 or 0.695 04m7. (26)

Note that the solutions include a,=a and a;,=a with « of
Eq. (17). On the other hand, if we assume that either a,=«
or o,=«, the coupling coefficient K is given by K, of Eq.
(16) [16]. Hence, the assumption of K=K, comprehends the
other two assumptions of «,=« and «@,=c«. Then, we have
investigated all the possible parameter sets and confirmed
that the following two sets can explain the phase and fre-
quency properties of Egs. (14) and (15) as stable equilibrium
points, as shown in Figs. 3(b) and 3(c):

(K,a,, ) = (- 11.551, 0.895 04, 0.204 967), (27)

(K,a,, ) = (- 11.551, 0.895 04, 0.695 04). (28)

C. Modeling coexistence of two synchronized modes in the
interactive calling behavior

Next, let us further model not only the robustly stable
antiphase synchronization but also the transient inphase syn-
chronization in the interactive calling behavior [14] as bista-
bility of two modes. From the experimental data, the phase
and frequency properties during the mode of the transient
inphase synchronization are estimated as follows:
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¢;,=1.56, (29)
de, dae
2m= —| [2w=4.29 Hz, (30)
dt | dt &
where ¢ represents the average phase difference and

ddﬁl ;k/ 2m= d;, |¢, /27 the synchronized frequency at the

transient inphase synchron1zat1on It should be noted that the
phase difference ¢;, is relatively close to 247, or zero, and the
synchronized frequency takes the value between the intrinsic
frequencies w, and w,. Here, we assume that the interaction
functions in Egs. (5) and (6), g, and g;,, are given by the
first- and second-order components in Fourier expansions as
8ap(P)=—K sin(-¢+a,)— yK sin{2(-¢p+a,)} and g,,(—¢)
=—K sin(¢+a;,)— yK sin{2(¢+ )} as natural extension of
Egs. (18) and (19), where yK represents the strength in the
second-order components. Therefore, Egs. (5)—(7) yield

do,
d: =w,— K sin(6, - 6,+ a,) — YK sin{2(6, - 6, + a,)},
(31)
d6, , .
e K sin(6, - 6, + o) — vK sin{2(6,— 0, + a},)},
(32)
d at a”
d_(f =(w,— w,) +2K cos(a > ah)sin<¢>— %)
+2vK cos(a, + ap)sin{2¢ - (a, — a;)}. (33)

At an equilibrium point ¢,
given as follows:

the synchronized frequency is

do .
| =w,+Ksin(¢" — a,) + VK sin{2(¢* - a,)},
dt &
(34)
do . \
7;’ = w,— K sin(¢* + o)) — YK sin{2(¢" + @)},
¢>:<
(35)
de,
where | 4= |4

Substituting Eqs (3), (4), (14), (15), (29), and (30) into
Eqgs. (34) and (35) produces the conditions for estimating the
parameter values. Now, we have six unknown parameters,
w, oy K, v, @, and ¢, and six experimental conditions
described by Egs. (3), (4), (14), (15), (29), and (30). There-
fore, we can determine some sets of the possible parameters
by using the method shown in the Appendix. The following
set is one of them:

K =-8.0248, (36)
y=- 13328, (37)
a,=1.2339, (38)
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FIG. 4. (Color online) Bistability of inphase and antlpha%e syn-
chronized states. While the nearly inphase state (d)m, ar |¢ /27)
=(1.567,4.29) is margmally stable as shown in the inset, the an-
tiphase state (¢aml,dt|¢, /277) (1.057,3.01) is robustly stable
with a wider basin.

a, = 0.445 997, (39)

Under the conditions of Egs. (3), (4), and (36)—(39), the
phase and frequency properties both in the inphase synchro-
nization and in the antiphase synchronization are quantita-
tively explained: the phase differences estimated by Eqgs.
(14) and (29) are bistable as shown in Fig. 4, and the fre-
quencies at two synchronized states are consistent with the
experimental results of Egs. (15) and (30). Moreover, the
state of the nearly inphase synchronization (¢7n,‘;—f| g/ 27)
=(1.567,4.29) is marginally stable as shown in Fig. 4 and
easy to transit to that of antiphase synchronization
(@is 2 |¢, /2m=(1.057,3.01) as experimentally ob-
served, when some noise is added to this system; this theo-
retical result qualitatively explains the experimental observa-
tion that two frogs transiently synchronized almost inphase
and then stably synchronized almost in antiphase [14].

III. BIOLOGICAL RELEVANCE OF THE ESTIMATED
PARAMETER VALUES TO CALLING BEHAVIOR
OF FROGS

As shown in the second section, we estimate the suitable
parameter values in two models of Egs. (18) and (19) and
Eqgs. (31) and (32), respectively. In this section, let us discuss
the biological meanings and suggestions of all the estimated
parameters in the models. Let us name, for simplicity, the
first-order approximation model of Egs. (18) and (19) as
model 1 and the second-order approximation model of Eqs.
(31) and (32) as model 2.

Intrinsic frequencies w, and w), represent the natural call-
ing periods of respective frogs and are estimated from the
time series data during periodic calling behavior of the single
frogs [14]. In behavioral science of living beings such as
frogs and insects, those values are called intercall-intervals
and known to vary dominantly dependent on temperature
[17]. As shown in Egs. (3) and (4), in the study, it turns out
that w, and w,, take close values of 3.87 and 4.33 Hz, which
suggests that under isolated situations the two frogs can be
described as similar oscillators.

Coupling coefficients K and vy represent the strength in
vocal communication between the two frogs; K is the
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strength of the first-order components in the interaction
terms, and yK is that of the second-order components, as
shown in model 1 and model 2. Substituting the estimated
parameter values of Egs. (27) and (28) into the interaction
terms in model 1 and those of Egs. (36)—(39) into model 2
clarify that the effective coupling coefficients in the two
models take close values with each other; namely, the maxi-
mum value of the interaction terms in model 1 is estimated
as 11.551 and that in model 2 as 16.702 [18]. Note that the
distance between frogs dominantly affects the value of K and
that of y because frogs interact through sounds, which decay
proportionally to the inverse of square of the distance [19].
In addition, since the phase and frequency properties both in
the antiphase and inphase synchronization are obtained from
the time series data during the same experimental trial, the
experimental condition including the distance between the
two frogs does not change during the two types of synchro-
nized calling behavior. Therefore, from the biological point
of view, it is reasonable that the effective coupling coeffi-
cients estimated in the interaction terms in model 1 and those
in model 2 take close values because of the decay property of
sounds and the stationary condition during the experiment
mentioned above.

Phase-shift parameter «; represents both the effect of the
variation from the simplest sinusoidal interaction term of the
Kuramoto model [2] and that of the time delay for the oscil-
lator i to respond to signals of the other oscillator [20]. Note
that, both in model 1 and model 2, «, and «; take distinctly
different values with each other except for one example of
Eq. (28) in model 1; as shown in the parameter set of Eq.
(27) in Model 1 and that of Egs. (38) and (39) in model 2,
the estimated value of «, is significantly larger than that of
ay,. Since the frogs in the experiment are the same species,
they are expected to behave as similar oscillators. Therefore,
the asymmetry in the phase-shift parameters may seem sur-
prising. It should be noted, however, that, especially in frog’s
vocal communication, leader-follower relationship has been
widely recognized [17]: while the leader is the individual
that is easy to begin to call first, the follower is the one that
tends to be stimulated by leader’s call and then starts calling.
Therefore, during interactive calling behavior, respective
frogs can play different roles, which would be the possible
mechanism to generate the asymmetry in phase-shift param-
eters of the interaction terms, although experimentally exam-
ining such relationship in Japanese tree frogs is an important
future problem.

IV. POSSIBLE BIOLOGICAL MEANINGS

Finally, we discuss possible biological meanings in the
synchronized calling behavior of male Japanese tree frogs.
Antiphase synchronization would be useful both for males
and females: males can distinguish the positions of other
males easily and keep their own territories; females can also
specify the positions of males, smoothly approach one of
them, and succeed in mating [11]. On the other hand, inphase
synchronization enables males to attract females far from
them because the total signal power of the male crowd gets
larger in such cooperative behavior, the same as synchroni-
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zation in flashing of fireflies [1-4]. We guess that the occur-
rence of these two modes may depend on the proportion in
the number of males and that of females in a real field. If
there are much more males than females, it is important for
males to attract more females to the field; in such a case,
inphase synchronization would be useful because of the in-
crease in the total signal power. On the other hand, if there
are already a sufficient number of females in the field, males
would synchronize in antiphase to keep their own territories
and increase the efficiency in mating. Thus, there is a possi-
bility that male Japanese tree frogs change the mode of their
synchronized calling behavior depending on their circum-
stances.

V. CONCLUSION

We have proposed two phase-oscillator models obtained
by fitting to the experimental data of the synchronized states.
Then, we have shown that the second-order approximation
model can reproduce not only the average phase and fre-
quency properties during the synchronized states in the ex-
periment but also the transitory dynamics in the interactive
calling behavior. Namely, in our model analysis, experimen-
tally observed antiphase and inphase synchronizations were
explained as stable equilibrium states with different sizes of
the basin of attraction; moreover, since it was shown that the
inphase state is marginally stable, but the antiphase state is
robustly stable, the experimental observation of the shift
from the inphase synchronization to the antiphase synchro-
nization [14] is qualitatively explained, under existence of
noise.

In particular, antiphase synchronization between two
frogs raises an interesting problem on spatiotemporal behav-
ior of more than two frogs because such a system should be
frustrated by the interactions [12,13]. Moreover, it should be
noted that frogs can move in the real fields. Calling behavior
of many male frogs can be understood as a highly frustrated
system of coupled phase oscillators, which can change its
spatial structure dynamically [7]. In this study, we have pro-
posed two models, which are derived on the different degrees
of approximations: the first-order model (model 1) explains
only the dominant mode of antiphase synchronization, and
the second-order model (model 2) additionally explains the
transient mode of inphase synchronization. From the view-
point of mathematical modeling, it is an important future
problem to investigate the validity of the model analysis by
estimating the real phase response curves directly from ob-
served time series data, for example, during desynchronized
calling behavior of two frogs [21] and comparing the esti-
mated functions with those in the proposed models.
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FIG. 5. (Color online) Solutions in Egs. (A5) and (A6) with respect to «, and a; after substituting the experimental values: Fig. 5(a)
represents the solutions in the whole parameter region and Fig. 5(b) the enlargement. The solid and dot lines represent the solution of Eq.
(A5) and that of Eq. (A6), respectively. The intersection signed with the arrow in Fig. 5(b) gives the parameter values described by Egs. (38)

and (39).
APPENDIX: METHOD OF PARAMETER CALCULATION do
_— = K K 2 B
We introduce the method for calculating the unknown pa- dt | 4 = 0+ K sin( = o) + yK sinf2 (i = )}
rameters in Egs. (31) and (32) (i.e., ,, w,, K, ¥, a,, and a;) ant
from the experimental data given by Egs. (3), (4), (14), (15), (A3)
(29), and (30). Substituting two stable solutions
(¢antz’ dt |¢ ) and ((bm’ dt (35) ylelds
P = o+ Ksin(d, - )+ K sinl2(, - )} a9
—| =o, sin(¢;, — a, sin{2(¢h;,, — @)}, s . .
dt | 4 7 - — K sin(¢hl; + ) — YK sin{2(gh5,, + )},
" ('b:nti
(A1) (A4)
de o . " Deleting parameters K and vy under the assumptions of
dr | 4 ~ Ksin(¢i, + ay) = yK sin{2(d5, + )}, K+#0 and y+#0 gives the following two relations:
(A2)
de s do . ,
- ( m wa) sin(¢;, + ap) — ( >s1n(¢m a,) { ( m wa) sin{2( ¢, — @)}
4 ‘ ‘
do . N do do . .
- ( m - wa>sm{2(¢m )}] [( m )sm{2(¢m + )} + ( P - wb)sm{2(¢m - aa)}}
¢ani * d):n
de s do o
- ( ol wa)sm(qﬁmi —a,)+ < o wa)sm(q.’)in -a,) r=0. (A5)
de s do . .
- ( m a)a) sin(¢;, + ap) — ( >51n(¢m {( m wa> sin{2( ¢, + ap)}
¢ i i
deo . N do do . .
+ ( o - wb>s1n{2(qu a)}] [( m )sm{2(¢m + ap)t+ ( o - wb)sm{2(qu - aa)}}
¢ani * d):n
de s do e
- ( ol wa)sm(qﬁmi +ay) — < o - wb)sm(d)m -a,) r=0. (A6)
4

s
a
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Substituting the experimental values of Egs. (3), (4), (14),
(15), (29), and (30) into Egs. (A5) and (A6) yields the two
equations with respect to the unknown parameters of «, and
ay,; therefore, the number of the obtained conditions is equal
to that of the unknown parameters, and the solutions can be
calculated. In Fig. 5, the solid and dot lines represent the
solution of Eq. (A5) and that of Eq. (A6), respectively. The
intersection signed with the arrow in Fig. 5(b) gives «, and
a;, described by Egs. (38) and (39); we estimated those val-
ues with the Newton method. Finally, after substituting the
estimated parameter values of Egs. (38) and (39) and the
experimental values of Egs. (3), (4), (14), (15), (29), and (30)

PHYSICAL REVIEW E 80, 011918 (2009)

into Egs. (A1) and (A2), we obtain the values of the rest two
parameters of K and 7y described by Egs. (36) and (37).

In this analysis, we have two assumptions K#0 and 7y
#0. Now, let us examine the validity. If K=0, there is no
interaction between two oscillators and they cannot synchro-
nize. Further, if y=0, the effect of the second-order compo-
nents in Fourier expansions is nothing, and the model of Eqs.
(31) and (32) becomes identical with that of Egs. (18) and
(19). Therefore, these two assumptions are consistent with
our purpose to explain coexistence of the antiphase and in-
phase synchronized states as bistability of the two modes.
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